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FOREWORD 

This document is one of sixteen sections that comprise the final 
report prepared by the Minneapolis-Honeywell Regulator Campany for the 
National Aeronautics and Space Administration under contract MASW-563. 
The report is issued in the following sixteen sections to facilitate 

progress warrants : 

sunrmary 

Control of Plants Whose Representation Contains Derivatives 
of the Control Variable 

Modes of Finite Response Time Control 

A Sufficient Condition in Optimal Control 

Time Optid Control of Linear Recurrence Systems 

Time-Optimal Bounded Phase Coordinate Control of Linear 
Recurrence Systems 

Penalty Functions and Bounded Phase Coordinate Control 

Linear Programming and Bounded Phase Coordinate Control 

Time Optimal Control with Amplitude and Rate Limited Controls 

A Concise Formulation of a Bounded Phase Coordinate Control 
Problem as a Problem in the Calculus of Variations 

A Note on System Truncation 

State Determination for a Flexible Vehicle Without a Mode 
Shape Requirement 

An Application of the Quadratic Penalty Function 
to the Determination of a Linear Control for a Flexible Vehicle 

Minimum Disturbance Effects Control of Linear Systems with 
Linear Controllers 

An Alternate Derivation and Interpretation of the Drift-Minimum 
Principle 

A'Wnimax Control for a Plant Subjected to a Known kad Disturbance 

,/ 

Criterion 

Section 1 (1541-TR 1) provides the motivation for the study efforts 
The and objectively discusses the significance of the results obtained. 

results of inconclusive and/or unsuccessfil investigations are presented. 
Linear programming is reviewed in detail adequate for sections 6, 6, and 2.6. 

It is sham in section 2 that the purely formal procedure for synthe- 
sizing an optimum bang-bang controller for a plant whose representation 
contains derivatives of' the control variable yields a correct result. 
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In section 3 it is shown that the problem of controlling m components 
(1 < m < n),, of the state vector for an n-th order linear constant coefficient 
plant, To zero  in finite time can be reformulated as a problem of controlling 
a single component. 

Section 4 shows PontriagidsMaximum Principle is often a sufficient 
condition for optimal control of linear plants. 

Section 5 develops an algorithm for compting the time optimal control 
f'unctions for plants represented by linear recurrence equations. 
may be to convex target sets defined by quadratic forms. 

Steering 

In section 6 it is shown that linear inequality phase constraints 
can be transformed into similar constraints on the control variables. 
Methods for finding controls are discussed. 

Existence of and approximations to optimal bounded phase coordinate 
controls by use of penalty Arnctions are discussed in section 7. 

In section 8 a maximum principle is proven for time-optimal control 
~ 5 t h  hnmded phse cnnstmints = 
problem solution is reduced to linear programing. 

AT- e~ist-ence theorem is proven, The 

A backing-out-of-the-origin procedure for obtaining trajectories for 
time-optimal control with amplitude and rate limited control variables is 
presented in section 9. 

Section 10 presents a reformulation of a time-optimal bounded phase 
coordinate problem into a standard calculus of variations problem. 

A mathematical method for assessing the approximation of a system by 
a lower order representation is presented in section 11. 

Section 12 presents a method for determination of the state of a 
flexible vehicle that does not require mode shape information. 

The quadratic penalty function criterion is applied in section 13 to 
develop a linear control law for a flexible rocket booster. 

In section 14 a method for feedback control synthesis for min imum load 
disturbance effects is derived. Examples are presented. 

Section 15 shows that a linear fixed gain controller for a linear 
constant coefficient plant may yield a certain type of invariance to 
disturbances. 
the concept of complete controllability. 
obtained as a specific example. 

Conditions for obtaining such invariance are derived using 
The drift minimum condition is 

In section 16 linear programming is used to determine a control f'unction 
that minimizes the effects of a known load disturbance. 



iv 

TABU OF C0N'TEWl"T 

ABSTRACT 

INTRODUCTION 

PRELIMINARIES 

NECESSARY CONDITIOHS FOR OPTIMAL CONTROLS 

A METHOD FOR COIWUTATIOBT OF EX'I%EXAL TRAJECTORIES FOR 
AMPLITUDE AND RATE LIMITED CONTROLS 

AN EXAMPLE TO IUUSTRATE "E COEJSTRUCTION OF AN FXEUWAL 
CONTROL 

CONCLUSIONS 

REF'ERENCES 

LIST OF ILLUSTRA!KCONS 

Fig. 1 Construction of Admissible Varied Control 
to Prove Gi Extrema1 

Fig. 2 Construction of Admissible Control in Proof 
of Necessary Conditions for P1 Intervals 

The Function (0 (t), Indicating Intervals of 
Mono t onici t$ 

Fig. 4 

Fig. 5 
Fig. 6 

The Inverse Functions ta($i) of ei 
Final Form of the Functions tD(Gi) 

All Possible P3 Intervals for the Function 
$(t) = sin (F t) On the Interval [0, 21 

Extrema1 Control Constructed Using Results 
Shown on Figure 6 

20 

28 

29 

29 

31 

32 

33 
34 

35 

36 

37 



-1- 

TIME OPTIMAL CONTROL WITH 

AMPLITUDE AND RATE LIMITED 

CONTROLS* 

W. W. Schmaedeke'and D. L. Russell * 
ABSTRACT 

Necessary conditions leading to a method for the determination 

of bounded control amplitude and  amplitude rate time optimal 

control trajectories by backing out of the origin are developed. 

The backing out procedure requires choosing the response time, 

the unaugmented system adjoint vector at the response time, the 

rate limited control variable amplitudes at the response time, and 

the rate limited control variable amplitudes at the initial time. 

A set of consistency conditions on the control variables are then 

used to determine the allowable control variable trajectories from 

a finite set of possibilities. The state trajectories including 

the state at the initial condition can be determined in the 

It has long been recognized that the maximum principle of 

Pontryagin would have to be modified to allow for controls whose 

switching rates were finite, due either to inertial or other 

factors. 

The first insight into the form of the resulting theory 

provided by Birch and Jackson in their 1959 paper, reference 
* Prepared under contract NASw-563 for the NASA 
+ Sr. Research Mathematician, Minneapolis-Honeywell-Reg. Co. 
Minneapolis, Minnesota * Research Consultant 

........................ 

was 
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2,  although they were dlscussIng qui te  a different.probiem. 

The first discussion of the problem together w i t h  a s e t  of 

necessary conditions characterizing the optimal cont ro l le rs  was 

provided by Chang. 

indicated by h i m  in reference 1. The proofs herein a re  

rigorous however, whereas Chang's a r e  heu r i s t i c .  The aspect of 

the problem t h a t  is new In  the  treatment herein i s  the requirement 

that  solut ions of the augmented adjoint  equations be d i f f e ren t i ab le  

on the  whole i n t e r v a l  (0,T) instead of merely piecewise d i f f e ren t i ab le  

on so cal led ''pang" in te rva ls .  

the "pang" in t e rva l s  t o  be located. 

shown that the optimal control  is e i t h e r  a t  extreme amplitude o r  

extreme veloci ty .  

Several of the r e s u l t s  i n  t h i s  paper were 

It i s  t h i s  reauirement which allows 

To be more spec i f i c ,  it i s  

The sub-intervals of (0,T) over which t h i s  

behavior occurs can be determined i f  appropriate i n i t i a l  and 

f i n a l  conditions a re  given. 

PRELIMINARIES 

Consider t he  l i n e a r  d i f f e r e n t i a l  equation 

= A(t)x + B( t )u  + c ( t )  

where A i s  an nxn matrax, B i s  an nxm matrix, and c i s  an 

n-vector. The elements of A, By and c a re  bounded continuous 

functions of time on an in te rva l  I under consideration. It 

i s  supposed that there  are no constraints  on the phase var iables  

x ( t )  other  than the  given i n i t i a l  point and the t a r g e t ,  and that 

the controls u ( t )  have components t h a t  a r e  bounded i n  amplitude 

and r a t e .  The c l a s s  of admissible controls is  defined as a l l  

vector functions u ( t )  defined on various subintervals of I whose 
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components satisfy 

where k - < m. 
are  bounded continuous f’unctions w i t h  the fur ther  assumption 

! P k  functions a l i ( t ) ,  a2i(t), b l i ( t ) ,  and bZi ( t )  

that . 

a t  a l l  times a t  which the a’s are d i f fe ren t iab le  (which is  

assumed t o  be almost everywhere), . 
u1 By defining new controls vi f o r  i = l,...,m with v1 = . 

vk+l = u ~ + ~ ,  . . . ,v = u, and new phase m 
= zn, n 

v2 = u2, 0 YVk = U k >  

variables zi f o r  i = l,...,n + k with z1 = xl, ..., z 

= uk the system n+k = ul, . . . , Z  ‘n+l 
0 

z = FZ + (Iv + h 

i s  obtained where 
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h =  

F =  

G =  

- -  
el 
0 . . 
0 
0 

0 . 
- -  0 

0 

0 

. 
I 

. . . . 
aril . . ann I bn l  b a  

0 

0 

. . . 

bl ,k+l*  O b l m  

0 0 0 . 0  
I . . I * . . . I 
! . 0 

0 

0 . . . o  I bn,k+l* O b n m  

I 

1 0 . 0  -0 ' 0  . 00 
1 . I 

0 0 1 0 .  ,o 
0 

0 
0 I 

* * .  6 I 

0 .  . . 
0 0' 1 I O  0 . 0  - 

1 and where A is  the o r ig ina l  

".I 0 

- 
B1 

0 

system's nxn coef f ic ien t  matrix, Bo 

I is  an nxk matrix whose k columns are the first k columns of the 

o r ig ina l  control coeff ic ient  matrix B, B1 is  an nx (m-k) matrix 
I 

I whose columns a re  the remaining (m-k) columns of B, and I k  is a 
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kxk identity matrix. Tine zero matrices are blocks of zeros of 

the appropriate dimension t o  make F have dimension (n+k) x (Wk) 

and Q have dimension (n+k) x m; the number of zeros in h is k so 

that h is an (n+k)-vector. 

The system (4)  is now in a bounded phase setting, that is, 

(this is the bounded phase constraint); furthermore, the bounds 

on the amplitude of the new control vector v(t) are given by 

alJ v,(t) aZj; j = k+l,...,m. 

NECESSARY CONDITIONS FOR OF'TlXAL CONTROLS 

For each time r with [O,T] contained in I, the set of all 

admissible controls on [O,.r] together with their corresponding 

responses is considered. The set of attainability K(T) is the 

set of all points x(r) in Rn which are terminal points of these 

response trajectories, i.e., if x(t) is the response to the 

control u(t) defined on the interval [O,T], then the point X(T) is 

t o  be included in the set K(r). 

compact convex subset of Rn. 

all non-empty compact subsets of R" with the distance d(C,,C,) 

between two such subsets C1 and C2 defined to be the infimum of 

all numbers d such that C1 lies in the d-neighborhood of C2 and 

C2 lies in the d-neighborhood of C1, Z becomes a complete metric 

space. 

It can be shown that K(T) is a 

By considering the collection C of 

Now the set K(T) is a compact subset of Rn and belongs 
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t o  2; furthermore, K(T) is  continuous i n  7 ,  ( L e .  K ( T ~ )  and K(T2) 

a re  c lose i n  the above metric sense if T~ and -r2 a re  close 

together) .  I f  x(0) i s  not i n  the t a r g e t ,  then a s  T increases,  

there  i s  a first t i m e  T a t  which the s e t  K ( T )  comes i n  contact 

w i t h  the  target. 

point $(T) on the boundary of K(T). 

Thus the optimal response $(T) has i t s  terminal 

Propert ies  of controls u ( t )  on an i n t e r v a l  [0,%] whose responses 

h i t  the boundary of K ( t l )  w i l l  be examined. 

lollowing def in i t ions  a re  made: 

To t h i s  end the 

D E F I N I T I O N  1. The l i n e a r  control process (4 )  subject t o  (6)  and 

( 7 )  is  considered. 

[ O , T ]  i s  cal led an extremal control $(t) i n  case the re  e x i s t s  a 

non-tr ivial  solut ion $(t ) of t h e  adjoint  equations* 

An admissible control v ( t )  on the i n t e r v a l  

@ = - F'q 
such t h a t  

where the m a x i m u m  i s  taken over a l l  admissible cont ro l le rs  v(s). 

LF3IM.A 1. A control $(t) on [O,T] i s  extremal if and only i f  the 

corresponding response z ( t )  has i t s  terminal point k(T) on the 

boundary of K ( T )  . 
PROOF: Assume $(t)  i s  such that  2 ( T )  l i e s  i n  the boundary of K(T). 

-o------------------------ * A prime on a vector o r  matrix means the transpose of t h a t  
vector or matrix. 
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The= l e t  ii be a svipport plane to K(T) 
let q be an outward normal to K(T) at 

q' [ 2 T)  - z(T)] ? 0 

at t h e  point A z \ L ) ,  /p\  and 

the point 2(T). Then 

for any point z(T) belonging to K(T).  

fundamental solution of the homogeneous equation corresponding 

to (4) with A(s,s) = I, the (n+k) x (n+k) identity, and consider 

the variation of parameters formula for a solution of (4): 

Mow let A(t,s) be a 

T + A(T,O)A"( s,O)h( s)ds 

( 9 )  

0 

Hence 

Let +(s)  be a particular s o l u t i o n  of the adjoint equations by 

defining 

Then 

0 o J  
n i.e., v is an extremal control. 

The other case namely, if' a(t) is extremal, i s  proven by 

beginning with equation (11) and proceeding backwards through the 

proof of the first case. This completes the proof. 
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According to Lemma 1, these extremal controls are candidates 

for the optimal controls since previous remarks have established 
that an optimal control has a response whose terminal point 

lies on the boundary of K(T). 

It will be convenient to decompose the adjoint vector q ' ( s )  

where Q ( s )  is an n-vector and @(s)  is a k-vector. Then (11) be- 

v(s) is decomposed by defining 

wherey(s) is a k-vector whose components are 

vl(s) E v,(s) ,...,%( s )  C vk(s), and where ~ ( s )  is an (m-k)-vector 
z 

whose components are gl(s) S uk+l( s, ,g(m-k) ( s )  um(s). 
u Also, for later use, u(s) is defined as a k-vector whose 

components are Gl(s) 5 ul(s),...,uk(s) Uk(S)' Then (13) 

may be written as 

c1 

T T 
@'(s)[$(s)-??(s)]ds + Q'(s)B1(s) [~(s)-~(s)]ds CI - > 0. 

0 0 

It i s  now possible to refine Lemma 1 as follows: 

LEMMA 2, 
k components (represented by v ( t ) )  satisfy 

A n  extremal control $(t) must be such that its first 
A 

rn 

th for i = l,,..,k, and for all yi(s) which are admissible i 

components of admissible controls v(s); furthermore, the remaining 
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and (8) becomes 
A 

A‘ [$(T) - x ( T ) ]  + if [C(T)-~?(T)~  0 .  (19 )  
By u t i l i z i n g  the  var ia t ion  of parameters representation of a 

A # -  m-k components of v ( t )  (represented by $(ti s a t i s f y  
m 

o r  equivalently 

f o r  i = 1,. ..) m-k, and f o r  a l l  admissible control  components 

uk+i(s) 

PROOF: Let a pa r t i cu la r  choice of v ( s )  be made as follows: 

v j (s )  E $,(s) f o r  J f i and l e t  vi(s)  be merely admissible. 

$ ( s )  - v(s) has a t  most one non-zero component namely, 

gi(s) - vi(s) .  

i n  (15) vanishes and condition (16) of the lemma is  established. 

Condition ( l 7 a )  and i t s  equivalent condition (17b) a re  proved 

Then 

With t h i s  choice f o r  v ( s ) ,  the  second i n t e g r a l  

i n  a similar manner. 

I 

I 

Returning t o  equation (8) q is  decomposed as follows: 

1)’ = ( L 5 ’ )  (18) 

! where h i s  an n-vector and 

de f in i t i on  of %(t) i n  the  remarks following equation (14), z(T) 

may be wri t ten as 

i s  a k-vector. According t o  the 
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t 
x(tj = E(t,o)xo + E(t,sj B ( S )  u(s)ds + 

0 

t 
+ 1 E(t,s) c(s)ds. 
0 

Now, noting that 

and substituting this and (20) ,nto (19) there results 
rn 

JL6'(s) B(s)[fi(s)-u(s)]ds + 5 / k  [u(T) -c(T)] 2 0, 
0 

where u(t) is any admissible control vector 

Lemma 3 is established in a manner identical to that used for 
Lemma 2. 

LEMMA 3. A n  extrema1 control v(s )  must be such that its first k 

components (represented by a, (t ) , . . . ,hk( t ) ) , when integrated, 
yield control components e,(t), . . . ,ak(t) which satisfy 

for i = l,...,k and all admissible components ui(t); furthermore, 

they must satisfy 
m 

for i = k+l,...,m and a l l  admissible components ui(t). 

REMARK 1. It is observed that the entire matrix B appears in the 

integrand whereas in Lemma 2, the matrix was Bl, i.e., the last 

(m-k) columns of B. Thus (24) is equivalent to (17) because 

(25) 
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Some qualitative properties of extremal controls will now 

be established. These are also necessary conditions for an 

optimal control. 

phrased in terms of u(t) rather than v ( t ) .  

THEOREM 1. Let G(t) be an extremal control for the system (1). 

If Gi(t) is at its upper limit during an interval of time, then 

the function [O'(s) B(s)Ii - > 0 on that interval. 
is at its lower limit during an interval of time, then 

[ e / ( s )  B(s)Ii - < 0 on that interval. 

These conditions will be more conveniently 

Also, if di(t) 

h PROOF: Let u,(t) = aZi(t) on an interval [t,,t2] and suppose 

that [ e ' ( ~ )  B(T) li < o at some point T in [t,, t2 I .  continuity, 

there is an interval [T1, T~], containing T in its interior, on 

which [e'(t) B(t)Ii < 0 .  

chosen so that 

Consider equation (23) with u,(t> 

But the integrand is negative on the entire interval and this 

is a contradiction, The remainder of  the theorem is proved in a 

similar manner. Q.E.D. 

Now consider again the adjoint equations for (4): 

p = -  F' J/ 
or, in terms of  8 and d 
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By performing the indicated matrix multiplication the two sets 

of equations are obtained: 

6 = -A1 8 

4 = - BL0 

No+,ice that 0 corresponds to the adjoint vector of the original 

system (1) whereas @, corresponding to the augmented coordinates 

I of the adjoint vector, is a trivial linear system in t h a t  no 

components of Ctt appear on the right sides. 
Given a fundamental solution E(t, to) to equations (30), 

(with E(to, to) = nxn identity) represent 0(t) may be represented 

t 
@(t) - $(to) = -BL(S) E(s, to) eOds ( 3 3 )  

In the following, a technique for utilizing $(t) in the con- 

struction of optimal trajectories will be developed. , 

DEFINITION 1. Let ui(t) be an admissible component of the control 

vector for (1) or (4), and define an interval of type B as a 

maximal closed subinterval of t h e  interval [O,T] whereon ui(t) 

is extremal, i.e., assumes maximum or minimum amplitude throughout 

the whole subinterval. 
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DEFIETITION 2. hi i r i t emal  of type F1 for u i ( t )  is  defined t o  be 

a maximal closed in t e rva l  i n  the i n t e r i o r  of which u i ( t )  i s  not 

extreme valued, i .e. ,  ui assumes ne i ther  i t s  max imum nor i t s  

minimum amplitude a t  any point i n  the  i n t e r i o r  of *he in t e rva l .  

Note t h a t  i f  P1 # [O,T], then ai is extreme a t  one end ( o r  both) 

of P1. 

DEFINITION 3. A n  i n t e rva l  of type P2 f o r  u i ( t )  is defined t o  be 

a maximal subinterval of [O,T] wheron u i ( t )  i s  not extreme and 

whereon G i ( t )  i s  a t  one of i t s  extremes, but not both. 

IlEMARK 2. The in t e rva l  [O,T] can be decomposed i n t o  non- 

overlapping in t e rva l s  of type B o r  type P1 whose union i s  [O,T]. 

THEOREM 2. Le t  the  system (1) be normal and consider an extrema1 

control  vector $(t) f o r  (1). For each i = l,...,m it i s  the 
A case that  on an in t e rva l  of type P1 f o r  G i ( t ) ,  e i t h e r  u i ( t )  i s  

a t  i t s  maximum value o r  i t s  minimum value a t  every t a t  which 

d,(t) i s  defined. 

. 
PROOF :Let t belong t o  the i n t e r i o r  of P1 and assume that a,(t) 
is  defined and i s  not extreme, Then, since [e‘(s) B ( s ) l i  1s not 

zero on an i n t e r v a l  by normality, we may assume fu r the r  that t i s  

such a point where [ d ( s )  B(s) Ii i s  not zero, (Th i s  would 

eliminate a s e t  of t i n t h e  i n t e r i o r  of P1 whose measure i s  zero) .  

By continuity,  [6’(s) B(s)Il i s  of one sign on an in t e rva l  about 

the  pc in t  t under consideration. For def ini teness ,  assume 

[6’( t )  B ( t ) ] ,  < 0. 

i s  not extreme, an admissible control u i ( s )  i s  constructed as 

follows: Let MI be a l i n e  through the  point ( t ,  G i ( t ) )  whose 

Then since b i ( t )  is  not extreme a d  since &,(t) 
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slope is bli(t). (For simplicity, it is assumed that 

bli(s) - -  < 0 < bzI(s) where both equalities do not hold 

simultaneously. Other cases would be treated similarly.) For 

a given 6) 0, let ml( 6) be a line through (t, ui(t)) whose 

slope is equal to the minikm of b2i(s) on the interval 

It, t + 61 and let %( 6) be a line through the same point whose 
slope is the m a x i m u m  of bli(s) on the interval [t, t + 61. Now 

let601 > 0 be chosen so small that the line m l ( 6 0 1 )  lies entirely 

A 

n between* the curve ui(s) and the line M1 in the interval [t,t + 6 1 (31 
and let 6-.- > 0 be chnsen SC! smll t h a t  t h e  l i ~ e  f i 2 \ V O 2 )  I E  lies Uf2 

between the curve ci(s) and the line M2 in the interval [t, t + 602]. 

Let 60 denote the sm’aller of GO1 and 602 and further be small enough 

that [@*(s) B(s)li < 0 in [t, t + B o ]  and let ml and m2 be the 

lines corresponding to 60; see Fig. 1. 

According to the previous construction, there is a segment S of 

the ordinate at t + 60 which is cut out by the line ml and the 
curve A ui(s). Since A u,(t) is not equal to its minimum value ali(t), 

the line L through P parallel to ml will intersect the curve n ui(s) 
then by continuity, there is a point P on the segment S such that 

at the point R at a time T in (t, t + 60) and such that it will 
intersect the line m2 at a point Q at some time 0 f o r  which this 

intersection is above the height‘ ali( a).  Now define ui(s) to be 

equal to ui(s) for s 5 t, and s 2 T. A 
On the interval [t, 71 

------------------_---------- 
may coincide with M1; similarly m2 may coincide with M2. * ml 
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define u ( s )  t o  be the segment of m2 between the point ( t ,  G i ( t ) )  
and Q; and t o  be the segment of L between Q and R.  Thus u i ( s )  

i s  an admissible control  satisfying the amplitude and the r a t e  

i 

bounds either by construction o r  because it i s  equal t o  A ui(s)  

which i s  assumed admissible. 

Now equation ( 2 3 )  with the par t icu lar  ui(s)  j u s t  constructed 

i s  considered. It is  seen t h a t  

. .  

t 

(t ,  T). T h i s  i s  a contradiction'and hence the  veloci ty  of A u i ( t )  

must be extreme. The proof goes through i n  the same way i f  i t  i s  

assumed t h a t  [ e l ( t )  B ( t ) ] ,  > 0. Q.E.D. 

REMARK 3 .  It follows from theorem 2 t h a t  t he  in t e rva l  [0, T ]  

i s  decomposable i n t o  subintervals o f  type B o r  type P1 which 

a re  nonoverlapping and whose union i s  [0, TI. 

optimal control  i s  e i t h e r  a t  extreme amplitude o r  extreme veloci ty ,  

whenever the  veloci ty  i s  defined. 

I n  other  words, the 

THEOREM 3 .  Let  the system (1) be normal and consider an extrema1 

control  vector  u ( t )  f o r  (1). 
A For each i = 1, ..., m it  i s  the 

n 
case t h a t  if there i s  an in te rva l  of type P1 f o r  ui such t h a t  

a t  least  one of i t s  endpoints say t*, i s  i n  t h e  i n t e r i o r  of  

[O, TI, then f o r  a l l  t i n  the P1 i n t e r v a l  f o r  which u i ( t )  i s  

defined: (i) @,(t) > @,(t*) implies  that  G i ( t )  i s  a t  i t s  
1' 

m a x i m u m  value; (ii) @,(t) < O i ( t * )  implies  t h a t  Bi ( t )  i s  a t  i t s  
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minimm value. 

PROOF : F r o m  Theorem 2 Qi(t) is at one extreme or the other in 

P1 intervals. 

P1 interval under consideration is a point t* interior to (0, T) 

it may be assumed without l o s s  of generality ( w . 1 . o . g . )  that 

By hypothesis, since one of the endpoints of the 

the point t* i s  the right end of P1. Furthermore, it is 

assumed w . 1 . o . g .  that G,(t*) is a minimum. 

in P1 at which Qi(t) is defined and suppose that @,(t) is greater 

than cPi(t*) but bi(t) is minimum (i.e., bli(t)). 

Now let t be a point 

Figure 2 supplies 

the  d e t a i l s .  

ui(s) is chosen so that on [t, t + 6 1  it has maximum slopean& lies 

above Gi(s) while it is parallel to Gi(s) from t + 6 to some 
A point 7 > t*, (choose 6 so small that z < T) . Then let ui( s) = ui(s) 

from T to T. 

Now from the construction of ui(s) and from equations ( 2 3 )  

t + 6  
r 

t" 
r 

t t + 6  

A On [t + 6, t*] the function ui(s) - ui(s) has the constant value, 
say -E. Thus the middle integral is 



Note that as 6 approaches zero, the integral in (36) (ignoring 

the multiplicative factor E )  approaches 

Choose €jO so small that for all 6 < 60 

t" 
< f [e'(s) B(s)]. ds < 2 2 J  1 2 
t+6 

Now the first integral in (35) can be made small on the order 

of 62 as follows: since iQi(s) - ui(s)l 5 K1 1s - tl on [t, t + 61, 

t 

elds 

An easier analysis applies to the last integral; namely 
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As a result of (41), (40), (38) and (35) 

e2 r 
[K1 K2 2 - E + K E (T - t*)] 3 0. 3 

It is next shown that 6 is bounded above by a constant times E. 

It is observed that Gi is greater than $i on [t, t + 61, hence 
their difference is not zero on [t, t + 61. Let the minimum of 

this difference be denoted by c1 > 0, then 

t +6  

or 

A 
= ui(t+6) - ui(t+6) 

(43) 

(44) 

= E  

Thus c1 6 5 E or 6 5 c2 E where c2 > 0. 
(42) yields 

Applying this result to 

K K C 2 e 2 - $ f + K  E ( T - ~ * ) ? O  1 2 2  3 

or 

(45) 
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ijut (46) is a contradict ion because For 6 suf f ic ien t iy  small, 

E and z - t* can be made a r b i t r a r i l y  small which means the 

quant i ty  I n  parantheses i s  negative. Thus it has been shown tha t  

when $,(t) > si(t*) then bi(t)  is maximum (where it i s  def ined) .  

A s imilar  proof w i l l  show t h a t  $,(t) < @,(t*) implies d i ( t )  i s  

minimum e 

! REMARK 4. Note tha t  in te rva ls  of type P2 coincide w i t h  in te rva ls  

whereon the s ign of $,(t) - @,(t*) i s  constant f o r  appropriately 

chosen points  t*. It w i l l  be shown l a t e r  tha t  there a re  only a 

f-tn-tfn n ~ ~ m h n n  =f 4-hn-n n-4 -4 -m +I PA- 
U A A b U b  t J W I L L U D  U- A W L  2 givzfi $ (t) azd t h a t  it LS i . L & A A - L " b  A L I A A U . V b *  

possible  i n  those cases where u i ( t )  i s  given a t  the f i n a l  time as  

w e l l  a s  t h e  i n i t i a l  time, t o  construct the family of  extremal 

controls .  

THEOREM 4 . Let the system (1) be normal and consider an extremal 

control  vector  B ( t )  f o r  (1). 

case that  i f  the e n t i r e  in te rva l  [O,T] (where T is  the minimal t i m e  

of response) i s  of type P1 f o r  u i ( t ) ,  then there  e x i s t s  a constant 

ci such t h a t  i f  $,(t) - ci > 0 then bi(t)  i s  a t  i t s  m a x i m u m  value 

and i f  @,(t) - ci < 0 then i i(t) i s  a t  i t s  minimum value (assuming 

t h a t  a i ( t )  i s  defined a t  t ) ,  

, 
- I  

For each i = 1, m i t  i s  the 

A 

If there a re  a t  least  two in t e rva l s  

o f  type P2 contained i n  the in te rva l  of type P1, then the value of 

the  constant ci i s  equal t o  9, evaluated a t  any of" the  i n t e r i o r  

endpoints o f  the type P2 in te rva ls .  

PROOF : 

CASE I: 

i s  t r i v i a l l y  t rue  as  the constant ci i n  t h i s  case may be chosen 

If  the whole in t e rva l  [O,T] i s  of type P2 the  theorem 

I 
1 



-20- 

a 

depending on whether Qi i s  m a x i m  o r  minimum. 

CASE 11: 

i n  P1 then l e t  t* be an i n t e r i o r  endpoint of a P 
A Consider the  case where u i ( t )  i s  minimum t o  the l e f t  of t* and 

m a x i m u m  t o  the  r ight  of t* (the other  case with the maximum and 

minimum reversed would be t reated s imi la r ly) .  

i n t e r i o r  point of [O,T] which i s  not the endpoint of an in t e rva l  

of type P2- Assume t h a t  @ ( t t )  - $(t*) > 0 but t ha t  a i ( t p )  i s  a t  

u i ( t )  on [O,T] as follows: L e t  u i ( t )  = Q i ( t j  f o r  t I t ; choose 

6 > 0 so small t h a t  i f  u i ( t )  has m a x i m u m  veloci ty  on [ t ' ,  t 

i s  paral le l  t o  gi(t) on [ t l^+  6, t*], and has minimum slope f o r  

a su i tab le  time duration t o  the right of t*, then the curve u i ( t )  

w i l l  i n t e r sec t  the  curve u,(t) a t  some point T t o  the r i g h t  of 

If there  are a t  l e a s t  two in t e rva l s  of type P2 contained 

in t e rva l .  2 

L e t  t *  be any 

. 
3 f Q  ___A. . .UU.  m i n i m l i m  Y"" T a t -  it be uuppuu=u a--..r..r--r.rJ C L - L  ui ia lr  J- CI 8 < t*. nl*- A r l e n  - construct 

+ 61, 

A 

t*, (This choice i s  possible because the slope of ^ui(t) i s  
A maximum t o  the r igh t  of t*), Final ly ,  l e t  u i ( t )  = u i ( t )  on [T,T] .  

From here on, one proceeds exactly as i n  the proof of theorem 3 

beginning with equation (35). 

A METHOD FOR COMPUTATION OF EXTREMAL 
TRAJECTORIES FOR AMPLITUDPI AND RATE 

LIMITED CONTROLS 

The foregoing theorems w i l l  now be given a more useful  in te rpre ta t ion .  

Since the  case where al, a2, bli, bZi, i = 1, ... k a re  constant 
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i s  of par t ic t r lar  i n t e r e s t ,  as  each condition on extremai 

t r a j e c t o r i e s  i s  s ta ted  i t s  special izat ion t o  t h i s  case w i l l  a l s o  

be given. Each i n t e r v a l  P1 of type P1 has a unique decomposition 

- 
P1 = P u 7 u . . .  uP2p 

21 22 
(47 1 

i n t o  in t e rva l s  P2 

prec ise ly  one point,  p = 1, 2,  ..., r-1. The bar ind ica tes  

topological closure.  

control u corresponding t o  the function @. 

of type P2 where P2 f I  F, cons is t s  of 
P P f+l 

Let ei be the i t h  component of the  optimal 
A I n  a l l  t h a t  fo l lows  

l e t  P1 be an i n t e r v a l  of type P1 f o r  A ui. Theorems 3 and 4 show t h a t  

corresponding t o  the  in t e rva l  P1 there  i s  a constant ci such t h a t  

the subintervals P2 of P1 coincide with those subintervals of P1 
D 

whereon s ign (@i(t) '- ci) i s  constant. Let 

Then (P2 ) i s  s e t  equal t o  the length of P2 and several  cases 
P n r 

a r e  considered. 

CASE I: 

$i(71) and Gi(T2) a r e  both extremal. 

Let T ~ ,  T~ be the endpoints o f  P1. 

T ~ ,  -r2 both belong t o  (0,T) .  Then it is  c l e a r  t h a t  

I n  f a c t  

if sgn (P2 ) = -1 

if sgn (P2 ) = +1 A u i ( q  = pi ; 1. ( a >  
ali 1 1 
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CASE X I S  E i the r  X -1 o r  T ~ ,  but riot both beelong te, (0,T). Then if 

E (0, T)  49(a) holds ,  i f  T~ E (0,T) 49(b) holds. I n  each case =1 
the  value of 3, a t  the other  endpoint, i . e . ,  e i t h e r  oi(0) o r  a i ( T )  

must be specif ied i n  some other  manner. 

CASE 111: T~ = 0, T2 = T. 

specif ied,  ne i ther  49(a) nor 49(b) hold. 

It i s  possible t o  consider problems wherein ne i ther  $,(O) nor 

ui(T) a re  specif ied.  

below i s  not immediately applicable. 

Then both Gi(0) and Qi(T) must be 

A I n  t h i s  case the procedure t o  be described 

This s i tua t ion  a r i s e s  i n  

t h e  ss-callec! interceptim prsblem. a re.”?,ark 3n this ?till be made 

a t  the  end of t h i s  paper. 

The values which Qi(t) assumes a t  T~ and T 

conditions merely by applying the f’tmdamental theorem of  

calculus  f o r  absolutely continuous functions.  

CONDITION 1 

lead t o  the following 
2 

. .  

P 
p2 P 

p2 

p 3  sgn(p2 ) = +1 p3sgn(P2 ) = -1 
P -  - P -  

If the bounds on the control  veloci ty  a re  constant then 

CONDITION l a  
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The requirement t h a t  u i ( t )  shall not achieve an extreme value 

i n  the I n t e r i o r  of P1 leads t o  

CONDITION 2 For each Q such tha t  1 5 u < r ( t h i s  s e t  could be 

void) 

p3ssgn (P ) = +1 
P 2 

p L G  

where T~~ i s  the r igh t  endpoint o f  the in t e rva l  P2. 

i nequa l i t i e s  ( 3 )  enable t h i s  t e s t i n g  procedure t o  be r e s t r i c t e d  

The 

t o  points  T ~ ~ .  

constant 

CONDITION 2a 

Again i f  the bounds on the control veloci ty  a re  

+ b2i  

P 

P 

3 sgn (p2 ) = 
- P  

bli 
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DBFINITION &. 3dbintervals of [ o , ~ ]  on which ariy control u.(t) 1 

may be dfined so that Conditions 1 and 2 above are satisfied with 

oi(t) replaced by ui(t), ii(t) = bZi(t) if sgn P2 = +1, 

ui(t) = bli(t) if sgn P2 

Thus every interval of type P1 is also of type P 

The converse need not hold since there may be no extension of 

u.(T) from the given interval of type P 

[O,T] as an extremal controller. 

P 
3' = -1, are called intervals of type P 

P 
by Theorems 3 ,  4 .  3 

into the entire interval 3 I 

pZFINITION 5. 
types B and B 

ui(t) is continuous and satisfies the preceding theorems on extremal 

controllers. then become intervals of type 

A decomposition of I = [O,T] into subintervals of 

is called acceptable if the resulting control 3 

The intervals of type P 3 
I p1 for ui(t). 
I 

The following theorem is of primary importance in establishing a 

procedure f o r  computing extremal controllers. 

THEOFEM 5. Assume that (G1B),(t) has at most finitely many zeroes 

on [O,T] and the functions a l i ( t )  and a2i(t) are constants. Then 

there are at most finitely many possible intervals of type P 

provided ui(0) and ui(T) are specified in advance. 

PROOF: 

be divided into finitely many subintervals in which Oi(t) is 

monotone. 

(B'B)i(t) has infinitely many zeroes in [O,T], contrary to 

assumption. 

consists of finitely many functions t1(ql), . . . , tS(qi), each a 

3' 

For a linear differential system the interval [o,T] may 

To prove this, note that the negation implies that 

Thus the inverse function t(Oi) of the function $,(t) 

j 
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I 

W.1.o.g. it may be assumed t h a t  to(Qi) i s  decreasing for odd Q 
~ 

and increasing for even 0. (Figs.  3 and 4 . )  The other  case i s  

handled s imi la r ly .  Let t o ( ( b i ) = O ,  ts+l(@i) T. 

The domain of de f in i t i on  of each t o ( O i )  i s  extended t o  a l l  o f  

I where Gi* i s  the closest  point t o  Qi where to(Qi*) is already 

&fined (Pig. 5) .  Fcr each of t h e  f i n i t e l y  Kmy pairs Cf indices 

u 0 - 0  < < u 2 - s + 1 , g ,  < i (Gi )  i s  defined by 
1 2  2' 1 

b z i ( t )  i f  u is  odd 

B&) = 
( b l i ( t )  i f  Q is even 

(Qi)  i s  a monotone i Then it is  easy t o  see t h a t  each g, 

decreasing function o f  Ql. 
(J 1 2  - 

(If ta(Qi) were increasing for u odd, 

I It i s  c l e a r  by comparison of (50) with Condition 1 t h a t  an in t e rva l  
k 

of type P can occur only when there exists a p a i r  ul, u2 and a 3 
value Qi such t h a t  

~ 
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where ui(t) is the control which must be defined on the interval 

according to the definition of an interval of type P A number 

of cases are now considered: 
3' 

If a1 = 0 ,  a2 = s + 1, then we required in the hypotheses of this 

theorem that ui(0) and ui(T) be fixed. Thus u (t (Qi)) - u 
u2 

is a constant G o &  beforehand. 

If al = 0, a2 arbitrary > 0 then u (t 
value known beforehand while u (t ( $i) ) = a2i( ta2( $i) ) or 

(#i)) is fixed at a constant 
i a1 a. 

=2 
ali (t a2 (q)* 
If a2 = s + 1 while a1 is arbitrary < s + 1 then u (t 
fixed at a constant value Mown beforehand while u (t 

(#,)) i s  

(#i)) = 
=2 

If 0 < al < u2 < s + 1 then u (t (Gi)) - ui(ta7(Gi)) is one of i a, c I 
the four functions a (t (#,)) - a7i(tal($i)), 6 = 1, 2, y = 1, 2 .  

- _  O2- 

Thus, since it was assumed the functions ali(t), a2i(t) were constants, 

it has been shown that there are at most finitely many values which 

u (t 
i are finitely many functions g, 
1 2  

there are but finitely many instances wherein equation (52) may 

hold. 

. Since there u2 (ai)) - u (t (Gi)) may assume for each al, 
u2 5 

(I (Gi) and each of them is monotone, 

This completes the proof o f  the theorem. 

REMARK 5. 
but vary with time, the finitely many values which we have shown 

In the case where a2i(t) and ali(t) are not constant 
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in the proof of the theorem may be equal to ui(t 

must be replaced by the finitely many functions ui(t 

(Gi)) - ui(t (qi)) 
O2 5 

(Gi)) - a, c 
u(t themselves. Then the conclusion of the theorem remains 

5 
valid if for each al, ct the function g, (@I) - (u (t (ai>> - 

1 2 -  O2 (@,)) has but finitely many zeroes on its domain of 
2 

definition. 

condition under which this holds sothe restriction to the case 

where aZi(t) and ali(t) are constant was made. 

likelihood is very small that any of these functions would have 

It is difficult to give a reasonably general sufficient 

Clearly the 

i n f i n i f n l v  man77 nnnnnc 4 n  Qnv given applicati=ne 
-LA&.& A I A I  " U l J  ..'CU.J Y U I  " U Y  AI. U L I J  C a ~ d s  it 

fairly safe to assume that there are but finitely many P 

even if ali(t) and aZi(t) are time-varying but it should be kept 

in mind that this has n o t  been established and it may be possible 

to construct pathological functions aZi(t), all (t) such that 
this would not be true. 

intervals 3 

~- 

REMARK 6. Note that the theorem also shows a method for finding 

the intervals of type P 

constants (or functions u (t 

since the functions g 

(Gi)) - u (t 
(ai) and the 

3 5 O2 
(@,)) are readily 

i *, i 0, 
determined. 

of types B and P 

of type P 

this can be done), it remains only to find all acceptable 

decompositions of [ O , T ] ,  and hence all possible controls ui(t) 

which satisfy the first four theorems. 

A n  acceptable decomposition of-[O,T] into intervals 

Thus after having found all possible intervals 

(and the previous theorem assures us that in many cases 
3' 

3 

There being only finitely 
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m a n y  of these the controi G i ( t )  which s a t i s f i e s  inequal i ty  (11) 

* -  

can e a s i l y  be found.:' If no values a re  given beforehand f o r  ui(0) 

and o r  ui(T) then these values could be varied and the above r e s u l t s  

applied t o  each cho3ce of those values t o  determine the bes t  ( i n  

the sense of (11)) set of values f o r  ui(0) and o r  ui(T). 

A short  example i l l u s t r a t i n g  the use o f  the above r e s u l t s  i s  now 
- _  ~. 

given 

AN EXAMPLE TO ILLUSTRATE THE 
CONSTRUCTION OF ANEXTREMAL CONTROL 

57f cos (2 t )  
2 Le t  the  t i m e  i n t e r v a l  be [0 ,2]  and (88 B) i ( t )  = - - 2 

_ - _  
Then (;6i(t) = s i n  (r 5n t ) .  
Require A ui(o) = 0, 4 ui(2j = 0. 

Suppose tha t  a2i = 1, ali = -1, 

The extrema1 control  a i ( t )  on [0,2]  

w i l l  be constructed. 

spec ia l  t o  the  constants aliy ali, 

I ts  relat ionship t o  the  immediately preceding discussion should 

be c l ea r ,  a s  well as generalizations t o  d i f f e ren t  constant bounds. 

An in t e rva l  of type P 

l eve l  l i n e  L through the graph of s i n  (F t )  so t h a t  t he  end- 

points  of L l i e  on the graph of s i n  (? t )  o r  e l s e  meet the l i n e s  

t = 0 o r  t = 2 and satisfies the following requirements: 

w i t h  Conditions 1 and 2 above.) 

The method used w i l l  be graphic and w i l l  be 

i n  t h i s  problem, b2i  bli 

occurs whenever it i s  possible  t o  draw a 3 

(Compare 

1. If the  endpoints of L are i n  ( 0 , 2 )  then the sum S of 

the lengths of those segments of L lying below s i n  (p t )  minus 

the sum of the lengths o f  t hose  segments of L lying above s i n  

(p t )  must be 2,  -2, or 0. If L' i s  any segment of L such t h a t  

the l e f t  endpoints of L and L'  coincide then, ( a )  I f  the f i r s t  

segment of  La l i e s  below s i n  (p t )  the sum S9 of the  lengths 
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or' those segments of L! ly ing  below sin [- '57r t) miriiLs the siii of 2 

the lengths of those segments of L1 lying above sin (F t) must be 
<2 and >O, (b) If the first segment of L! lies above sin (g t) 
then the corresponding quantity must be >-2 and <Os 

2. If t = 0 is an endpoint of L and the right hand endpoint 

of L belongs to (0, 2) then S = 1 or -1 and -1 < SI < 1 for any 
Ll. 

lies in (0, 2) and the right hand endpoint is at t = 2, but here 

A similar situation occurs if the left hand eqdpoint of L 

L, LB are taken to have a common right hand endpoint. 

3. If L stretches from t = 0 to t = 2 then S = 0 and 

-1 < S o  < 1 for any LF having an endpoint in common with Le 

3 
indicated by level lines through the graph. The only acceptable 

sequence of intervals consists of the single interval P1 of type 

P1 which is indicated in the figure. 

using the results of the first four theorems. Fig. 7 shows the 
resulting extrema1 control ui(t) 

The graph in Fig. 6 shows all possible intervals of type P 

I 

This is clear by inspection, 

CONCLUSIONS 

Necessary conditions leading to a method for the determination 

of bounded control amplitude and bounded amplitude rate time 

optimal control trajectories by backing out of the origin were 

developed. It can thus be said the theory of bounded rate 

optimal control has been brought to the same stage of development 

as the theory of optimal control without rate or phase bounds. 
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I I I 
I I I 

I I I 
I I 
I I 1 
I I I t 7 t + O 0  *S 

Figure 1. Construction of Admissible Varied Control to Prove h. Extrema1 
1 
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MINIMUM AMPLITUDE 

4 t  
T 

Figure 2. Construction of Admissible Control in Proof of Necessary 
Conditions for PI Intervals 
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4 t  
T 

Figure 3. The Function 0. (t), Indicating Intervals of Monotonicity 
1 
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2\ 
DOMAIN OF DEFINITION OF tl(@i) 

Figure 4. The Inverse Functions to (Qi) of Qi 
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I 
I 

I 
THESE L INES 
ARE IDENTICAL 

I 
I 

I 
THESE L INES 
ARE IDENTICAL 

I I 

I 
I 

THESE L INES 
ARE IDENTICAL 

Figure 5. Final Form of the Functions tu(+i) 
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NOTE: BROKEN LINES ARE ACTUALLY AT THE SAME LEVEL AS ADJACENT SOLID LINES 

Figure 6. All  Possible P Intervals for the Function @(t) = sin ( y t )  
On the Interva? [O, 21 
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Figure 7.  Extrema1 Control Constructed Using Results Shown 
on Figure 6 


